

Secure Module/Key Management

Application

Technical Specification Document

Revision History

Rev # Date Author Description of Change

1.0 10/25/202
3

Design Team Added Use Case 1 workflow diagram and SQL table.

2.0 11/1/2023 Design Team Add Use Case 2&3 workflow diagram. Fixed SQL table.

3.0 11/8/2023 Design Team Added descriptions to workflow diagrams. Highlight
parts we don't understand in red.

4.0 11/24/202
3

Design Team Steps were added to the diagram to show how the
application will operate in different use cases.

5.0 11/29/202
3

Design Team Updated steps and diagrams. Instructions on how to
set up Azure Key Vault, its integration, and OpenSSL
setup.

6.0 12/19/202
3

Design Team Added detailed steps for the creation and integration
of Azure Key Vault and Certificates.

7.0 4/10/2024 Design Team Changed diagrams and documentation to align with
the new implementation.

8.0 4/12/2024 Documentation
Team

SQL Database image has been updated. added
controller documentation still needs information

QTC Management, Inc. Confidential

Table of Contents

1 General Information 1
1.1 Project Overview 1
1.2 References 1

2 Technical Design 2
2.1 Microservices 2

2.1.1 Microservice S1 2
2.2 Integrations 4

2.2.1 Azure Key Vault 4
2.2.2 Orchestration and Workflow 8
2.2.3 Extract Transform Load (ETL) 8
2.2.4 Robotic Process Automation (RPA) 8

2.3 User Interfaces (UI) 9
2.3.1 Generate Data Page 9

3 Use cases 11
3.1 Use Case 1 11
3.2 Use Cases 2 and 3 13

4 Appendix 15

QTC Management, Inc. Confidential

List of Figures

Figure 1: S1 Component Diagram 2

Figure 2: S1 Entity Relationship Diagram 4

Figure 3: P1 Process Model 6

Figure 4: Web 1 Component Diagram

Figure 5: Generate Data Page

Figure 6: View Data Page

Figure 7: View Data Page Option 7

Figure 8: [Use Case 1] Sequence Diagram 9

Figure 9: [Use Case 2 & 3] Sequence Diagram 9

List of Tables

Table 1: Stakeholders 1

Table 2: S1 Published API Discovery Links 2

Table 3: S1 Event Broker 2

Table 4: S1 Event Subscriptions 3

Table 5: S1 Event Broker 3

Table 6: S1 Produced Events 3

Table 7: Data Store Inventory 4

Table 8: S1 Logging and Monitoring 5

Table 9: Aggregated APIs Discovery Links 5

Table 10: Web 1 Links 8

Table 11: Web 1 Role-based Access Control (RBAC) Matrix 8

Table 12: Web 1 Logging and Monitoring 8

Table 13: S1 Controller Methods 8

QTC Management, Inc. Confidential

1 GENERAL INFORMATION

1.1 Project Overview

Secure Module/Key Management Project is an application that does secure data transfer between
two points in three use cases: passing data between servers in a trusted domain, passing data
from a server in a trusted domain to another server outside the trusted domain, passing data from
a server in a trusted domain to another server outside the trusted domain over an unknown
number of intermediary systems. The application will use HTTPS to transfer data and log all
HTTP activity from all three use cases. The logged data should be encrypted and be visible to
allowed users. The application will use Microsoft Azure Vault, ASP.NET Core, Microsoft SQL
Server.

Goals:

1. Passing data from one server to another inside a trusted domain across an HTTPS
connection, but HTTP activity is logged to a central logging database that users are able
to access. Sensitive data (PHI/PII) that is part of the data payload must be protected from
being visible to users accessing the logs.

2. Passing data from one server in a trusted domain to another server outside of the trusted
domain across an HTTPS connection. HTTP activity is logged as detailed above.

3. Passing data from one server in a trusted domain to another server outside of the trusted
domain with an unknown number of intermediary systems handling the data between the
two endpoints. Data is transmitted across HTTPS connections and HTTP activity should
expect to be logged as detailed above.

Stakeholder Name Email Address
Owner QTC
Alternate Owner
Technical Contact Francisco Guzman
Alternate Technical Contact Richard Cullen

Table 1: Stakeholders

1.2 References

● [Link to external document 1, etc. Include Architecture and Requirements artifacts]

● SDD (Dashboard Design Draft)

● SECURE MODULE / KEY MANAGEMENT PROJECT PDF from Richard Cullen

QTC Management, Inc. Confidential

2 TECHNICAL DESIGN

2.1 Microservices

Does not apply.

2.1.1 Microservice S1

Figure 1: S1 Component Diagram

2.1.1.1 Inbound

Does not apply.

2.1.1.1.1 S1 Event Subscriptions

Does not apply.

2.1.1.2 Outbound

2.1.1.2.1 S1 Aggregate APIs

Does not apply.

2.1.1.2.2 S1 Produced Events

Does not apply.

2.1.1.3 S1 Data Stores

Type Name Description
Databases
Microsoft SQL Server

QTC SV Members. Store PHI/PII data on SV Members.

File System
For example: SMB/CIFS/Samba,
NFS, Amazon EFS

N/A N/A

Blob
For example: Azure Blob
Storage, Amazon S3, Amazon
EBS

N/A N/A

Message/Event Queue
For example: RabbitMQ,
Kafka/Confluent, Azure Event
Grid/Hub/Azure Service
Bus,Amazon SQS, Amazon

N/A N/A

QTC Management, Inc. Confidential

MQ/Apache MQ, Amazon SNS,
Amazon Kinesis Streams, QTC
MQ

Table 7: Data Store Inventory

[In the following sections, list each owned data store.]

2.1.1.3.1 S1 SQL Database

Figure 2: S1 Entity Relationship Diagram

2.1.1.4 S1 Logging and Monitoring

Does not apply.

Type Name
Monitoring
Data Store [File; Database; Windows Event; Messaging]
Events Captured [User Access Control; User Activity; Application

Exception]
Audit Logging Review Process

Table 8: S1 Logging and Monitoring

QTC Management, Inc. Confidential

2.2 Integrations

2.2.1 Azure Key Vault

Azure Key Vault is a cloud service designed to safely store secrets, keys, and certificates.

1. Set up an Azure subscription:

● Create an Azure account.

2. Sign into the Azure Portal:

● Access Azure dashboard to manage resources.

3. Creating a vault:

Step 1: Sign in to Azure Portal

● Go to the [Azure Portal](https://portal.azure.com/).
● Log in using your Azure account credentials.

Step 2: Open Azure Key Vault Service

● Once logged in, search for "Key Vault" in the search bar at the top of the portal.
● Select "Key Vault" from the search results.

Step 3: Create a New Key Vault

● Click on the "+ Create" button to start the process of creating a new vault.
● This opens the "Create Key Vault" wizard.

Step 4: Basics Tab

● Subscription: Select the Azure subscription you want to use.
● Resource Group: Choose an existing resource group or create a new one.

Resource groups are containers that hold related resources for an Azure solution.
● Key Vault Name: Enter a unique name for your vault.
● Region: Select the geographical region where your vault will be located.

Step 5: Access Policy Configuration

● Go to the "Access policies" tab.

QTC Management, Inc. Confidential

https://portal.azure.com/

● Configure who has access to the Key Vault and what permissions they have. You
can set permissions for keys, secrets, and certificates. Azure role-based access
control or Vault access policy.

● You can add access policies later.

Step 6: Networking

● Select the networking tab.
● Configure the networking settings as per your requirements. You can choose to

allow access from all networks or set up specific network rules.
● Create a private endpoint to allow a private connection to this resource.

Additional private endpoint connections can be created within the key vault or
private link center. Fields for private endpoint: Name ,Subscription, Resource
group, Region, Subnet, Private DNS Zone.

Step 7: Tags (Optional)

● Use the "Tags" tab to apply tags to your Key Vault. Tags are name/value pairs that
enable you to categorize resources and view consolidated billing.

Step 8: Review and Create

● Go to the "Review + create" tab.
● Azure will validate your configuration. Once validation passes, review your

settings.
● Click "Create" to deploy the Key Vault.

Step 9: Manage the Vault

● After the Key Vault is created, go to its overview page.
● Here, you can manage secrets, keys, and certificates.
● You can also modify access policies and networking settings as needed.

Step 10: Monitor and Maintain

● You can also monitor the usage and access logs.
● Update policies and configurations as needed to ensure the security of your stored

keys and secrets.

QTC Management, Inc. Confidential

Integrate Azure Key Vault into your ASP.NET website:

Prerequisites:

● Visual Studio Code.
● Install the .NET SDK if it's not already installed.
● Install the C# extension for Visual Studio Code to work with .NET applications.

Refer to this link to install Azure Key Vault in our web application:
https://learn.microsoft.com/en-us/visualstudio/azure/vs-key-vault-add-connected-service?vi
ew=vs-2022

1. Install Azure Key Vault NuGet packages:

● Add the “Azure.Security.KeyVault.Secrets”, “Azure.Identity”, and
“Microsoft.Extensions.Configuration.AzureKeyVault” packages and others as needed to
our ASP.NET project.

2. Register your application with Microsoft Entra ID:

1. Register the Application:

● Navigate to Microsoft Entra ID.
● Select “App registrations”.
● Click on “New registration”.
● Enter the name for your application.
● Specify the supported account types (choose according to your organization's

needs).
○ Supported account types:

 Who can use this application or access this API?

● Accounts in this organizational directory only (Cal State LA only
(Organization) - Single tenant)

● Accounts in any organizational directory (Any Microsoft Entra ID
tenant - Multitenant)

● Accounts in any organizational directory (Any Microsoft Entra ID
tenant - Multitenant) and personal Microsoft accounts (e.g. Skype,
Xbox)

● Personal Microsoft accounts only.

● Set the redirect URI (optional, mainly used for web applications). Return the
authentication response to this URI after successfully authenticating the user.
Providing this now is optional and it can be changed later, but a value is required
for most authentication scenarios.

QTC Management, Inc. Confidential

https://learn.microsoft.com/en-us/visualstudio/azure/vs-key-vault-add-connected-service?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/azure/vs-key-vault-add-connected-service?view=vs-2022

● Click “Register”.

2. Get Application (Client) ID and Directory (Tenant) ID:

● After registering, you'll be taken to the application's overview page.
● Note down the Application (Client) ID and Directory (Tenant) ID, as these will be

needed later.

3. Create a Client Secret:

● Go to “Certificates & secrets” under your app registration.
● Click on “New client secret”.
● Provide a description and set an expiry period.
● Click “Add”.
● Note: the secret value won't be retrievable after you leave this page.

4. Assign Permissions to Your Application in Azure Key Vault

1. Go to Your Key Vault:

● In the Azure Portal, navigate to the Key Vault you want your application
to access.

2. Add Access Policy:

● Go to “Access policies” in your Key Vault settings.
● Click on “Create”.
● Select the secret permissions (like Get, List, Set) your application requires.
● Click on the “Principal” tab and search and choose your registered

application.
● Click “Create”.

5. Update QTC and 3rd Application to Access Azure Key Vault

1. Install Azure SDK Packages:

QTC Management, Inc. Confidential

● If not already done, install the necessary Azure SDK packages in your
application, such as `Azure.Security.KeyVault.Secrets` and
`Azure.Identity`.

2. Configure Your Application:

● In your application, add the necessary code to authenticate using the Client
ID, Tenant ID, and Client Secret.

● Use the Azure SDK to retrieve secrets from the Key Vault.

3. Test the Integration:

● Run your application to ensure it can successfully retrieve secrets from
Azure Key Vault.

3. Configure application:

● In your “Startup.cs” file or through the app settings, use the
“AzureServiceTokenProvider” class from the
“Microsoft.Azure.Services.AppAuthentication” package to authenticate with Microsoft
Entra ID and obtain tokens.

4. Access secrets in your code:

● Utilize the “SecretClient” class from the “Azure.Security.KeyVault.Secrets” package to
retrieve secrets from the Key Vault.

5. Implement proper access control:

● Ensure that your application has the necessary permissions to access the Key Vault by
setting access policies in the Key Vault settings.

6. Handle secrets::

● Handle the rotation of secrets in the Key Vault.

Azure Key Vault Integration with 3rd Party Applications:

1. SSL Certificate for Secure Communication:

● Implement SSL certificates on our server and the 3rd party’s server. This ensures that any
data transmitted between the two servers is encrypted and secure.

2. Encrypt Data Before Transmission:

● Before sending data to the 3rd party, encrypt it with RSA.

QTC Management, Inc. Confidential

3. 3rd Party Application Registered in Microsoft Entra:

● The 3rd party application must be registered in Microsoft Entra. This registration allows
the application to authenticate with Azure and request access tokens.

4. Configure Azure Key Vault:

● Store the keys in Azure Key Vault. Configure access policies in Azure Key Vault to grant
the 3rd party application permission to retrieve the decryption key.

5. 3rd Party Application Requests Access Token:

● When the 3rd party application needs to decrypt the data, it first requests an access token
from Microsoft Entra ID, authenticating itself using its credentials (like a client ID and
secret, or a certificate).

6. 3rd Party Application Accesses Azure Key Vault:

● With the access token, the 3rd party application makes a request to Azure Key Vault to
retrieve the decryption key. The request must be authenticated and authorized by Azure
Key Vault.

7. Decryption of the Data:

● After successfully retrieving the decryption key from Azure Key Vault, the 3rd party
application uses this key to decrypt the data.

8. Secure Storage of Keys and Credentials:

● Ensure that the keys and credentials are securely stored and handle the decryption key
securely.

9. Token and Key Management:

● Handle token expiration and renewal when interacting with Azure AD. It should also
follow best practices for key management, including key rotation. We will expire after
use and create new keys for next use.

10. Audit and Monitoring:

● Regularly monitor and audit the access logs of Azure Key Vault and Azure AD to ensure
that the key access and authentication requests are legitimate.

Creating OpenSSL Certificate

Refer to link for installation steps and creating Self Signing Certificate:
https://knowledge.digicert.com/solution/generate-a-certificate-signing-request-using-openssl-on-
microsoft-windows-system

QTC Management, Inc. Confidential

https://knowledge.digicert.com/solution/generate-a-certificate-signing-request-using-openssl-on-microsoft-windows-system
https://knowledge.digicert.com/solution/generate-a-certificate-signing-request-using-openssl-on-microsoft-windows-system

1. Install OpenSSL:

● Ensure that OpenSSL is installed on your system. It's available for Windows, Linux, and
macOS.

2. Generate a Private Key:

● For each organization, generate a private key using OpenSSL.
● This generates a 2048-bit RSA private key and saves it to a .pem file.

3. Create a Certificate Signing Request:

● Generate a CSR using the private key.
● The CSR includes: (referenced from link above.)

○ Country Name: Use the two-letter code without punctuation for country, for
example: US or CA.

○ State or Province: Spell out the state completely; do not abbreviate the state or
province name, for example: California.

○ Locality or City: The Locality field is the city or town name, for example:
Berkeley. Do not abbreviate. For example: Saint Louis, not St. Louis.

○ Company: If the company or department has an &, @, or any other symbol using
the shift key in its name, the symbol must be spelled out or omitted, in order to
enroll.

○ Organizational Unit: The Organizational Unit (OU) field is the name of the
department or organization unit making the request. To skip the OU field, press
Enter on the keyboard.

○ Common Name: The Common Name is the Host + Domain Name. It looks like
"www.digicert.com" or "digicert.com".

4. Sign and Self-Sign the Certificates:

● For internal use, self-sign the certificate.

5. Repeat for the 3rd Party Organization:

● Follow the same steps to generate a separate private key and certificate for the 3rd party
organization.

Uploading Certificates to Azure Key Vault

After creating the certificates, you can upload them to Azure Key Vault:

1. Access Your Key Vault:

● Within the Key Vault, go to the Certificates section.

2. Import or Generate a Certificate:

● You can either import an existing certificate or generate a new one directly in Key Vault.

QTC Management, Inc. Confidential

● To import, click on “Generate/Import” and then choose Import to upload your certificate
file (`.pem` or `.pfx` file).

3. Provide Certificate Details:

● Fill in the necessary: (* are required fields) *name of the certificate, type of CA,
*Subject, DNS Names, Validity period (in months), file type, Lifetime Action Type,
*Percentage Lifetime, Advanced Policy Configuration and tags.

● Press “Create”

4. Azure Permissions and Renewal:

● Make necessary permissions.
● Keep track of the 3rd party's certificate validity period.
● Renew certificates before they expire.

2.2.2 Orchestration and Workflow

Does not apply.

2.2.3 Extract Transform Load (ETL)

Does not apply.

2.2.4 Robotic Process Automation (RPA)

Does not apply.

QTC Management, Inc. Confidential

2.3 User Interfaces (UI)

2.3.1 Pages

Figure 4: Generate Data Page

Figure 5: View Data Page

QTC Management, Inc. Confidential

Figure 6: Home Page

Not applicable for the time being.

Environment URL
DEV
SQA N/A
UAT
PROD

Table 10: Web 1 Links

Role Permissions
RoleA AView

BView
BEdit

RoleB AView
BView
AEdit
BEdit

Table 11: Web 1 Role-based Access Control (RBAC) Matrix

Logging/Tracing Data Store [File; Database; Windows Event; Messaging]
Events Captured [User Access Control; User Activity; Application

Exception]
Audit Logging Review Process [SOX Compliant; Manual Frequency; AIOPS]

Table 12: Web 1 Logging and Monitoring

The following sections describe the web controllers.

QTC Management, Inc. Confidential

2.3.1.1 Account Controller

Account Controller - This controller handles the login page.

Action Request
Parameters

Request
Body

Role Permission Model View Service

Login Username
Password

username
admin
input data
patients
login view

 LoginPage

Table 13: Account Controller Methods

2.3.1.2 Home Controller

Home Controller - This controller handles the landing page.

Action Request
Parameters

Request
Body

Role Permission Model View Service

Index View Index
Privacy View Privacy
Error Error View Error View Model

Table 13: Home Controller Methods

2.3.1.3 API Controller

API Controller - This is receiving and confirms that the data was received.

Action Request
Parameters

Request
Body

Role Permission Model View Service

ReceiveData Data receive data
data.ToString

Table 13: API Controller Methods

2.3.1.4 Patient Controller

Patient Controller - This controller handles the generating of the patient data and all methods for the

patient.

Action Request
Parameters

Request
Body

Role Permission Model View Service

InputData View Patient InputData
GenerateData Patient addPatient

Writeline
InputData

 Patient

SearchPatient Patient View Patient SearchData
SendDataAsync patient

action
 Patient

Table 13: Patient Controller Methods

QTC Management, Inc. Confidential

2.3.1.4.1 Aggregate APIs

Does not apply.

3 USE CASES

The following are the primary use cases represented as sequence diagrams with narrative and the

accompanying user interface.

3.1 Use Case 1

The process involves the secure transmission of data containing sensitive information (such as
Personal Health Information [PHI] and Personally Identifiable Information [PII]) between
servers within a trusted domain. The communication channel is safeguarded using HTTPS to
ensure encryption in transit. Concurrently, HTTP requests and responses are logged for auditing
or analytical purposes. However, to maintain the confidentiality of sensitive data, measures are
implemented to encrypt PHI/PII before the logs are stored. This ensures that while users can
access these logs for legitimate purposes, they are unable to view or retrieve any sensitive
personal information contained within the data payload.

Figure 8: [Use Case 1] Sequence Diagram

Steps:

1. User inputs login credentials.

QTC Management, Inc. Confidential

2. Authenticate credentials.
3. Display Home Page(Generate Data Page).
4. User enters data in the form.
5. Retrieve an available AES key and QTC’s public RSA key from Azure Key Vault.
6. Encrypt the data using AES key.
7. Encrypt the AES key using the public key.
8. Store encrypted data and encrypted AES key in database.

3.2 Use Cases 2 and 3

Use Case 2: The procedure entails transferring data from a server within a trusted domain to an
external server outside of this domain, using an HTTPS connection to ensure secure data transit.
Similar to the internal process, all HTTP activity is meticulously logged, capturing the details of
the data exchange without compromising security. Although the destination server lies outside
the trusted domain, the integrity of the data in transit is maintained through HTTPS encryption.
As with internal logging, any sensitive information within the payload, such as PHI/PII, is
encrypted before logging to ensure it remains invisible and inaccessible to users who have
permission to view the HTTP logs. This practice upholds privacy and security standards even
when interacting with servers beyond the trusted domain.
Use Case 3: In this scenario, data is being transmitted from a server within a trusted domain to
another server situated outside the trusted domain. The data transfer may pass through an
unspecified number of intermediary systems. Throughout this transmission chain, each segment
of the data's journey is secured using HTTPS connections to ensure encryption and integrity of
the data in transit. As is standard practice, HTTP activities—including those across the
intermediary systems—are comprehensively logged. These logs detail the data exchange process
without compromising the encrypted state of sensitive content. Precautions are taken to obscure
or strip any Personal Health Information (PHI) or Personally Identifiable Information (PII) from
these logs, safeguarding the sensitive data from exposure to users who have access to these logs,
thus maintaining privacy and compliance with data protection regulations.

QTC Management, Inc. Confidential

Figure 9: [Use Case 2 & 3] Sequence Diagram

Steps (On the Fly):

1. Input Login.
2. Authenticate credentials.
3. Display Home Page (Generate Data Page).
4. Enter data in the form.
5. Retrieve an available AES key from Azure Key Vault.
6. If sending to an internal application (Use Case 2):

● Retrieve company’s public RSA key from Azure Key Vault.
7. If sending to an external application (Use Case 3):

● Retrieve the third party’s public RSA key from Azure Key Vault.
8. Encrypt the data using the AES key.
9. Encrypt the AES key with the public RSA key.
10. Convert encrypted data and encrypted AES key into JSON file.
11. Send to internal application.

Steps (Sending from Database):

12. Input Login.
13. Authenticate credentials.
14. Display Home Page (Generate Data Page).
15. Click on View Patients Page.
16. Enter a search query to find data.
17. Select data.
18. If sending to internal application:

● Data is unmodified.
19. If sending to an external application:

QTC Management, Inc. Confidential

● Retrieve company’s private key from Azure Key Vault.
● Decrypt AES key with private key.
● Retrieve the third party’s public key.
● Encrypt AES key with public key.

20. Convert encrypted data and encrypted AES key into JSON file.
21. Exchange certificates with Azure Key Vault.
22. Authenticate the 3rd party:

● If authenticated, the encrypted data is exchanged and authenticated.
● If not authorized, the encrypted data is not exchanged.

4 APPENDIX

PHI/PII - Personally Identifiable Information.

RSA - Rivest–Shamir–Adleman.

AES - Advanced Encryption Standard.

HTTPS - Hypertext Transfer Protocol Secure

MS SQL- Microsoft SQL Server

HIPAA - Health Insurance Portability and Accountability Act

Key Management - Azure Key Vault allows users to generate, import, and manage
cryptographic keys used for encryption and decryption in applications and services.

Secrets Management - Enables the secure storage and management of application secrets, such
as connection strings, API keys, and passwords.

Certificate Management: Azure Key Vault allows the storage and management of digital
certificates used for secure communication and authentication in applications.

Access Control - Role-based access control (RBAC) and permissions can be configured to
control who can access and manage the stored keys, secrets, and certificates.

QTC Management, Inc. Confidential

	Secure Module/Key Management Application
	1GENERAL INFORMATION
	1.1Project Overview
	1.2References

	2TECHNICAL DESIGN
	2.1Microservices
	2.1.1Microservice S1
	2.1.1.1Inbound
	2.1.1.1.1S1 Event Subscriptions

	2.1.1.2Outbound
	2.1.1.2.1S1 Aggregate APIs
	2.1.1.2.2S1 Produced Events

	2.1.1.3S1 Data Stores
	2.1.1.3.1S1 SQL Database

	2.1.1.4S1 Logging and Monitoring

	2.2Integrations
	2.2.1Azure Key Vault
	2.2.2Orchestration and Workflow
	2.2.3Extract Transform Load (ETL)
	2.2.4Robotic Process Automation (RPA)

	2.3User Interfaces (UI)
	2.3.1Pages
	2.3.1.1Account Controller
	Account Controller - This controller handles the login page.
	Action
	Request Parameters
	Request Body
	Role
	Permission
	Model
	View
	Service
	Login
	Username
	Password
	username
	admin
	input data
	patients
	login view
	
	
	
	LoginPage
	
	2.3.1.4.1Aggregate APIs

	3USE CASES
	3.1Use Case 1
	3.2 Use Cases 2 and 3

	4APPENDIX

